Solution 10

1. Let *E* be a bounded, convex set in \mathbb{R}^n . Show that a family of equicontinuous functions is bounded in *E* if it is bounded at a single point, that is, if there are $x_0 \in E$ and constant *M* such that $|f(x_0)| \leq M$ for all *f* in this family.

Solution. By equicontinuity, for $\varepsilon = 1$, there is some δ_0 such that $|f(x) - f(y)| \le 1$ whenever $|x - y| \le \delta_0$. Let $B_R(x_0)$ a ball containing E. Then $|x - x_0| \le R$ for all $x \in E$. We can find $x_0, \dots, x_n = x$ where $n\delta_0 \le R \le (n+1)\delta_0$ so that $|x_{n+1} - x_n| \le \delta_0$. It follows that

$$|f(x) - f(x_0)| \le \sum_{j=0}^{n-1} |f(x_{j+1} - f(x_j))| \le n \le \frac{R}{\delta_0}.$$

Therefore,

$$|f(x)| \le |f(x_0)| + n + 1 \le M + \frac{R}{\delta_0} \quad \forall x \in E, \ \forall f \in \mathcal{F}.$$

2. Let $\{f_n\}$ be a sequence of bounded functions in [0,1] and let F_n be

$$F_n(x) = \int_0^x f_n(t)dt$$

- (a) Show that the sequence $\{F_n\}$ has a convergent subsequence provided there is some M such that $||f_n||_{\infty} \leq M$, for all n.
- (b) Show that the conclusion in (a) holds when boundedness is replaced by the weaker condition: There is some K such that

$$\int_0^1 |f_n|^2 \le K, \quad \forall n.$$

Solution.

- (a) Since $|F_n| \leq \int_0^x |f_n(t)| dt \leq M$, and $|F_n(x) F_n(y)| \leq \int_y^x |f_n(t)| dt \leq |x y|M$, $\{F_n\}$ is uniformly bounded and equicontinuous. Then it follows from Arzela-Ascoli theorem that $\{F_n\}$ is sequentially compact.
- (b) It follows from the Cauchy-Schwarz inequality that

$$|F_n(x) - F_n(y)| \le \int_y^x |f_n(t)| dt \le \left(\int_y^x 1^2 dt\right)^{1/2} \left(\int_y^x |f_n(t)|^2 dt\right)^{1/2} \le \sqrt{K} \sqrt{|x-y|}.$$

Similarly one can show that $\{F_n\}$ is uniformly bounded. Then apply Arzela-Ascoli theorem.

3. Prove that the set consisting of all functions G of the form

$$G(x) = \sin^2 x + \int_0^x \frac{g(y)}{1 + g^2(y)} \, dy$$

where $g \in C[0, 1]$ is precompact in C[0, 1].

Solution. Straightforward to check $||G||_{L^{\infty}} \leq 2$ and $||G'||_{L^{\infty}} \leq 3$. By Ascoli's Theorem this set is precompact.

4. Let $K \in C([a, b] \times [a, b])$ and define the operator T by

$$(Tf)(x) = \int_{a}^{b} K(x, y)f(y)dy.$$

- (a) Show that T maps C[a, b] to itself.
- (b) Show that whenever $\{f_n\}$ is a bounded sequence in C[a, b], $\{Tf_n\}$ contains a convergent subsequence.

Solution.

(a) Since $K \in C([a,b] \times [a,b])$, given $\varepsilon > 0$, there exists $\delta > 0$ such that $|K(x,y) - K(x',y)| < \varepsilon$, whenever $|x - x'| < \delta$. Then for $x, x' \in [a,b], |x - x'| < \delta$, one has

$$|(Tf)(x) - (Tf)(x')| \le \int_{a}^{b} |K(x,y) - K(x',y)| |f(y)| dy \le |a-b| ||f||_{\infty} \varepsilon.$$

Hence $Tf \in C[a, b]$.

- (b) Suppose $\sup_n ||f_n||_{\infty} \leq M < \infty$. It follows from the proof of (a) that δ can be taken independent of n. Hence $\{f_n\}$ is equicontinuous. Furthermore, since $|(Tf_n)(x)| \leq \int_a^b |K(x,y)| |f_n(y)| dy \leq M(b-a) ||K||_{\infty}$, $\{f_n\}$ is uniformly bounded. Then it follows from Arzela-Ascoli theorem that $\{Tf_n\}$ contains a convergent subsequence.
- 5. Let f be a bounded, uniformly continuous function on \mathbb{R} . Let $f_a(x) = f(x a)$. Show that there exists a sequence of unit intervals $I_k = [n_k, n_k + 1], n_k \to \infty$, such that $\{f_{n_k}\}$ converges uniformly on [0, 1].

Solution. Each f_n is defined on [0, 1]. Since f is bounded and uniformly continuous on \mathbb{R} , $\{f_n\}$ is uniformly bounded and equivcontinuous. Apply Ascoli's theorem it contains a uniformly convergent subsequence.

Note. The lesson is, if you keep watching dramas in TVB every evening, soon you find some new one resembling an old one.

6. Optional. A bump function is a smooth function φ in \mathbb{R}^2 which is positive in the unit disk, vanishing outside the ball, and satisfies $\iint_{\mathbb{R}^2} \varphi(x) dA(x) = 1$. Let f be a continuous function defined in an open set containing \overline{G} where G is bounded and open in \mathbb{R}^2 . For small $\varepsilon > 0$, define

$$f_{\varepsilon}(x) = \frac{1}{\varepsilon^2} \iint_{\mathbb{R}^2} \varphi\left(\frac{y-x}{\varepsilon}\right) f(y) \, dA(y) \; .$$

Show that f_{ε} is $C^{\infty}(\overline{G})$ and tends to f uniformly as $\varepsilon \to 0$.

Note. This property has been used in the proof of Cauchy-Peano theorem.

Solution. Since φ is smooth and the integration is in fact over a bounded set, for j = 1, 2,

$$\frac{\partial f_{\varepsilon}}{\partial x_j}(x) = \frac{-1}{\pi \varepsilon^3} \iint_{\mathbb{R}^2} \frac{\partial \varphi}{\partial x_j} \left(\frac{y-x}{\varepsilon}\right) f(y) \, dA(y)$$

By consecutive differentiation, one sees that f_{ε} is smooth. Next, note that

$$\frac{1}{\varepsilon^2} \iint_{\mathbb{R}^2} \varphi\left(\frac{y-x}{\varepsilon}\right) \, dA(y) = 1.$$

For, letting B be the ball $\{y : |y - x| \le \varepsilon\},\$

$$\iint_{\mathbb{R}^2} \varphi\left(\frac{y-x}{\varepsilon}\right) \, dA(y) = \iint_B \varphi\left(\frac{y-x}{\varepsilon}\right) \, dA(y)$$
$$= \iint_{\mathbb{R}^2} \varphi\left(\frac{y}{\varepsilon}\right) \, dA(y)$$
$$= \varepsilon^2 \iint_{\mathbb{R}^2} \varphi(z) \, dA(z)$$
$$= \varepsilon^2 .$$

Now, for $\varepsilon' > 0$, there is some δ such that $|f(y) - f(x)| < \varepsilon'$ when $|x - y| < \delta, x, y \in \overline{G}$. For $\varepsilon \in (0, \delta)$,

$$\begin{aligned} |f_{\varepsilon}(x) - f(x)| &= \left| \frac{1}{\varepsilon^2} \iint_B \varphi\left(\frac{y - x}{\varepsilon}\right) (f(y) - f(x)) \, dA(y) \right| \\ &\leq \frac{1}{\varepsilon^2} \iint_B \varphi\left(\frac{y - x}{\varepsilon}\right) |f(y) - f(x)| \, dA(y) \\ &< \varepsilon' \, , \end{aligned}$$

hence $f_{\varepsilon} \to f$ uniformly as $\varepsilon \to 0$.

- 7. Determine which of the following sets are dense, open dense, nowhere dense, of first category and residual in \mathbb{R} (you may draw a table):
 - (a) $A = \{n/2^m : n, m \in \mathbb{Z}\},\$
 - (b) B, all irrational numbers,
 - (c) $C = \{0, 1, 1/2, 1/3, \dots\}$,
 - (d) $D = \{1, 1/2, 1/3, \dots\}$,
 - (e) $E = \{x: x^2 + 3x 6 = 0\},\$
 - (f) $F = \bigcup_k (k, k+1), k \in \mathbb{N}$,

Solution. (a) A is dense, not open, not nowhere dense, of first category and not residual.

(b) B is dense, not open, not nowhere dense, of second category and residual.

(c) C is not dense, not open (closed in fact), nowhere dense, of first category and not residual.

(d) D is not dense, not open (not closed), nowhere dense, of first category and not residual.

(e) E is the finite set $\{(-3 + \sqrt{33})/2, (-3 - \sqrt{33})/2\}$. It is not dense, not open (closed in fact), nowhere dense, of first category and not residual.

(e) F is dense, open, not nowhere dense, of second category and residual.

Sets	Dense	Open dense	Nowhere dense	First category	Residual
A	\checkmark	×	×	\checkmark	X
B	\checkmark	×	X	×	\checkmark
C	X	X	\checkmark	\checkmark	X
D	X	×	\checkmark	\checkmark	X
E	X	×	\checkmark	\checkmark	X
F	\checkmark	\checkmark	X	X	\checkmark

- 8. Determine which of the following sets are dense, open dense, nowhere dense, of first category and residual in C[0, 1] (you may draw a table):
 - (a) \mathcal{A} , all polynomials whose coefficients are rational numbers,
 - (b) \mathcal{B} , all polynomials,
 - (c) $C = \{f : \int_0^1 f(x) dx \neq 0\}$,
 - (d) $\mathcal{D} = \{ f : f(1/2) = 1 \}$.

Solution. (a) \mathcal{A} is dense (and countable too), not open, not nowhere dense, of first category, and not residual.

(b) \mathcal{B} is dense (and uncountable), not open, not nowhere dense, of first category and not residual. (\mathcal{B} can be expressed as the countable union of P_n where P_n is the set of all polynomials of degree not exceeding n. Each P_n is closed and nonwhere dense.)

(c) \mathcal{C} is dense, open, not nowhere dense, of second category, and residual.

(d) \mathcal{D} is not dense, not open (closed in fact), nowhere dense, of first category, and not residual.

Sets	Dense	Open dense	Nowhere dense	First category	Residual
\mathcal{A}	\checkmark	×	×	\checkmark	X
B	\checkmark	×	X	\checkmark	X
\mathcal{C}	\checkmark	\checkmark	X	X	\checkmark
\mathcal{D}	X	X	\checkmark	\checkmark	X