Solution 10

1. Let E be a bounded, convex set in \mathbb{R}^{n}. Show that a family of equicontinuous functions is bounded in E if it is bounded at a single point, that is, if there are $x_{0} \in E$ and constant M such that $\left|f\left(x_{0}\right)\right| \leq M$ for all f in this family.
Solution. By equicontinuity, for $\varepsilon=1$, there is some δ_{0} such that $|f(x)-f(y)| \leq 1$ whenever $|x-y| \leq \delta_{0}$. Let $B_{R}\left(x_{0}\right)$ a ball containing E. Then $\left|x-x_{0}\right| \leq R$ for all $x \in E$. We can find $x_{0}, \cdots, x_{n}=x$ where $n \delta_{0} \leq R \leq(n+1) \delta_{0}$ so that $\left|x_{n+1}-x_{n}\right| \leq \delta_{0}$. It follows that

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq \sum_{j=0}^{n-1} \left\lvert\, f\left(x_{j+1}-f\left(x_{j}\right) \left\lvert\, \leq n \leq \frac{R}{\delta_{0}} .\right.\right.\right.
$$

Therefore,

$$
|f(x)| \leq\left|f\left(x_{0}\right)\right|+n+1 \leq M+\frac{R}{\delta_{0}} \quad \forall x \in E, \forall f \in \mathcal{F} .
$$

2. Let $\left\{f_{n}\right\}$ be a sequence of bounded functions in $[0,1]$ and let F_{n} be

$$
F_{n}(x)=\int_{0}^{x} f_{n}(t) d t .
$$

(a) Show that the sequence $\left\{F_{n}\right\}$ has a convergent subsequence provided there is some M such that $\left\|f_{n}\right\|_{\infty} \leq M$, for all n.
(b) Show that the conclusion in (a) holds when boundedness is replaced by the weaker condition: There is some K such that

$$
\int_{0}^{1}\left|f_{n}\right|^{2} \leq K, \quad \forall n
$$

Solution.

(a) Since $\left|F_{n}\right| \leq \int_{0}^{x}\left|f_{n}(t)\right| d t \leq M$, and $\left|F_{n}(x)-F_{n}(y)\right| \leq \int_{y}^{x}\left|f_{n}(t)\right| d t \leq|x-y| M,\left\{F_{n}\right\}$ is uniformly bounded and equicontinuous. Then it follows from Arzela-Ascoli theorem that $\left\{F_{n}\right\}$ is sequentially compact.
(b) It follows from the Cauchy-Schwarz inequality that

$$
\left|F_{n}(x)-F_{n}(y)\right| \leq \int_{y}^{x}\left|f_{n}(t)\right| d t \leq\left(\int_{y}^{x} 1^{2} d t\right)^{1 / 2}\left(\int_{y}^{x}\left|f_{n}(t)\right|^{2} d t\right)^{1 / 2} \leq \sqrt{K} \sqrt{|x-y|}
$$

Similarly one can show that $\left\{F_{n}\right\}$ is uniformly bounded. Then apply Arzela-Ascoli theorem.
3. Prove that the set consisting of all functions G of the form

$$
G(x)=\sin ^{2} x+\int_{0}^{x} \frac{g(y)}{1+g^{2}(y)} d y
$$

where $g \in C[0,1]$ is precompact in $C[0,1]$.
Solution. Straightforward to check $\|G\|_{L^{\infty}} \leq 2$ and $\left\|G^{\prime}\right\|_{L^{\infty}} \leq 3$. By Ascoli's Theorem this set is precompact.
4. Let $K \in C([a, b] \times[a, b])$ and define the operator T by

$$
(T f)(x)=\int_{a}^{b} K(x, y) f(y) d y .
$$

(a) Show that T maps $C[a, b]$ to itself.
(b) Show that whenever $\left\{f_{n}\right\}$ is a bounded sequence in $C[a, b],\left\{T f_{n}\right\}$ contains a convergent subsequence.

Solution.

(a) Since $K \in C([a, b] \times[a, b])$, given $\varepsilon>0$, there exists $\delta>0$ such that $\mid K(x, y)-$ $K\left(x^{\prime}, y\right) \mid<\varepsilon$, whenever $\left|x-x^{\prime}\right|<\delta$. Then for $x, x^{\prime} \in[a, b],\left|x-x^{\prime}\right|<\delta$, one has

$$
\left|(T f)(x)-(T f)\left(x^{\prime}\right)\right| \leq \int_{a}^{b}\left|K(x, y)-K\left(x^{\prime}, y\right)\left\|f (y) \left|d y \leq|a-b|\|f\|_{\infty} \varepsilon\right.\right.\right.
$$

Hence $T f \in C[a, b]$.
(b) Suppose $\sup _{n}\left\|f_{n}\right\|_{\infty} \leq M<\infty$. It follows from the proof of (a) that δ can be taken independent of n. Hence $\left\{f_{n}\right\}$ is equicontinuous. Furthermore, since $\left|\left(T f_{n}\right)(x)\right| \leq$ $\int_{a}^{b}\left|K(x, y)\left\|f_{n}(y) \mid d y \leq M(b-a)\right\| K \|_{\infty},\left\{f_{n}\right\}\right.$ is uniformly bounded. Then it follows from Arzela-Ascoli theorem that $\left\{T f_{n}\right\}$ contains a convergent subsequence.
5. Let f be a bounded, uniformly continuous function on \mathbb{R}. Let $f_{a}(x)=f(x-a)$. Show that there exists a sequence of unit intervals $I_{k}=\left[n_{k}, n_{k}+1\right], n_{k} \rightarrow \infty$, such that $\left\{f_{n_{k}}\right\}$ converges uniformly on $[0,1]$.

Solution. Each f_{n} is defined on $[0,1]$. Since f is bounded and uniformly continuous on $\mathbb{R},\left\{f_{n}\right\}$ is uniformly bounded and equivcontinuous. Apply Ascoli's theorem it contains a uniformly convergent subsequence.
Note. The lesson is, if you keep watching dramas in TVB every evening, soon you find some new one resembling an old one.
6. Optional. A bump function is a smooth function φ in \mathbb{R}^{2} which is positive in the unit disk, vanishing outside the ball, and satisfies $\iint_{\mathbb{R}^{2}} \varphi(x) d A(x)=1$. Let f be a continuous function defined in an open set containing \bar{G} where G is bounded and open in \mathbb{R}^{2}. For small $\varepsilon>0$, define

$$
f_{\varepsilon}(x)=\frac{1}{\varepsilon^{2}} \iint_{\mathbb{R}^{2}} \varphi\left(\frac{y-x}{\varepsilon}\right) f(y) d A(y) .
$$

Show that f_{ε} is $C^{\infty}(\bar{G})$ and tends to f uniformly as $\varepsilon \rightarrow 0$.

Note. This property has been used in the proof of Cauchy-Peano theorem.

Solution. Since φ is smooth and the integration is in fact over a bounded set, for $j=1,2$,

$$
\frac{\partial f_{\varepsilon}}{\partial x_{j}}(x)=\frac{-1}{\pi \varepsilon^{3}} \iint_{\mathbb{R}^{2}} \frac{\partial \varphi}{\partial x_{j}}\left(\frac{y-x}{\varepsilon}\right) f(y) d A(y) .
$$

By consecutive differentiation, one sees that f_{ε} is smooth. Next, note that

$$
\frac{1}{\varepsilon^{2}} \iint_{\mathbb{R}^{2}} \varphi\left(\frac{y-x}{\varepsilon}\right) d A(y)=1
$$

For, letting B be the ball $\{y:|y-x| \leq \varepsilon\}$,

$$
\begin{aligned}
\iint_{\mathbb{R}^{2}} \varphi\left(\frac{y-x}{\varepsilon}\right) d A(y) & =\iint_{B} \varphi\left(\frac{y-x}{\varepsilon}\right) d A(y) \\
& =\iint_{\mathbb{R}^{2}} \varphi\left(\frac{y}{\varepsilon}\right) d A(y) \\
& =\varepsilon^{2} \iint_{\mathbb{R}^{2}} \varphi(z) d A(z) \\
& =\varepsilon^{2}
\end{aligned}
$$

Now, for $\varepsilon^{\prime}>0$, there is some δ such that $|f(y)-f(x)|<\varepsilon^{\prime}$ when $|x-y|<\delta, x, y \in \bar{G}$. For $\varepsilon \in(0, \delta)$,

$$
\begin{aligned}
\left|f_{\varepsilon}(x)-f(x)\right| & =\left|\frac{1}{\varepsilon^{2}} \iint_{B} \varphi\left(\frac{y-x}{\varepsilon}\right)(f(y)-f(x)) d A(y)\right| \\
& \leq \frac{1}{\varepsilon^{2}} \iint_{B} \varphi\left(\frac{y-x}{\varepsilon}\right)|f(y)-f(x)| d A(y) \\
& <\varepsilon^{\prime}
\end{aligned}
$$

hence $f_{\varepsilon} \rightarrow f$ uniformly as $\varepsilon \rightarrow 0$.
7. Determine which of the following sets are dense, open dense, nowhere dense, of first category and residual in \mathbb{R} (you may draw a table):
(a) $A=\left\{n / 2^{m}: n, m \in \mathbb{Z}\right\}$,
(b) B, all irrational numbers,
(c) $C=\{0,1,1 / 2,1 / 3, \cdots\}$,
(d) $D=\{1,1 / 2,1 / 3, \cdots\}$,
(e) $E=\left\{x: x^{2}+3 x-6=0\right\}$,
(f) $F=\cup_{k}(k, k+1), k \in \mathbb{N}$,

Solution. (a) A is dense, not open, not nowhere dense, of first category and not residual.
(b) B is dense, not open, not nowhere dense, of second category and residual.
(c) C is not dense, not open (closed in fact), nowhere dense, of first category and not residual.
(d) D is not dense, not open (not closed), nowhere dense, of first category and not residual.
(e) E is the finite set $\{(-3+\sqrt{33}) / 2,(-3-\sqrt{33}) / 2\}$. It is not dense, not open (closed in fact), nowhere dense, of first category and not residual.
(e) F is dense, open, not nowhere dense, of second category and residual.

Sets	Dense	Open dense	Nowhere dense	First category	Residual
A	\checkmark	\boldsymbol{X}	\boldsymbol{X}	\checkmark	\boldsymbol{X}
B	\checkmark	\boldsymbol{x}	\boldsymbol{X}	\boldsymbol{X}	\checkmark
C	\boldsymbol{X}	\boldsymbol{x}	\checkmark	\checkmark	\boldsymbol{X}
D	\boldsymbol{X}	\boldsymbol{X}	\checkmark	\checkmark	\boldsymbol{X}
E	\boldsymbol{X}	\boldsymbol{x}	\checkmark	\checkmark	\boldsymbol{X}
F	\checkmark	\checkmark	\boldsymbol{X}	\boldsymbol{X}	\checkmark

8. Determine which of the following sets are dense, open dense, nowhere dense, of first category and residual in $C[0,1]$ (you may draw a table):
(a) \mathcal{A}, all polynomials whose coefficients are rational numbers,
(b) \mathcal{B}, all polynomials,
(c) $\mathcal{C}=\left\{f: \int_{0}^{1} f(x) d x \neq 0\right\}$,
(d) $\mathcal{D}=\{f: f(1 / 2)=1\}$.

Solution. (a) \mathcal{A} is dense (and countable too), not open, not nowhere dense, of first category, and not residual.
(b) \mathcal{B} is dense (and uncountable), not open, not nowhere dense, of first category and not residual. (\mathcal{B} can be expressed as the countable union of P_{n} where P_{n} is the set of all polynomials of degree not exceeding n. Each P_{n} is closed and nonwhere dense.)
(c) \mathcal{C} is dense, open, not nowhere dense, of second category, and residual.
(d) \mathcal{D} is not dense, not open (closed in fact), nowhere dense, of first category, and not residual.

Sets	Dense	Open dense	Nowhere dense	First category	Residual
\mathcal{A}	\checkmark	\boldsymbol{x}	\boldsymbol{x}	\checkmark	\boldsymbol{X}
\mathcal{B}	\checkmark	\boldsymbol{x}	\boldsymbol{x}	\checkmark	\boldsymbol{X}
\mathcal{C}	\checkmark	\checkmark	\boldsymbol{X}	\boldsymbol{X}	\checkmark
\mathcal{D}	\boldsymbol{x}	\boldsymbol{X}	\checkmark	\checkmark	\boldsymbol{X}

